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Abstract. The critical properties of a random Ising model with long-range isotropic 
interactions decaying as R-(d+o) are analysed by using renormalisation group methods in an 
expansion in E ’  = 2 0  - d, where d is thcdimensionality. For E ’  > 0 the critical behaviour is 
described by a stable fixed point O(JE’)  in the physical region of parameter space. The 
crossover to short-range behaviour is analysed and takes place when U = 2 + e/106, 
E =4--d>0. There is then a small region 0 < 0 - 2 < 0 ( ~ )  where the system is still 
dominated by long-range behaviour. The results for d = 1 are compared with those 
obtained previously for the random hierarchical model and it is found that the two models 
do not show the same critical behaviour in the E ’  expansion. 

1. Introduction 

The critical behaviour of random m-component spin systems with long-range isotropic 
interactions has been studied by Yamazaki (1978) by means of the Callan-Symanzik 
equations in the general case m > 1. The long-range potential in consideration decays 

, 0 < a < 2, and critical properties are derived in an expansion in E ’  = 2a - d 
(Fisher et a1 1972, Yamazaki and Suzuki 1977). 

Although random dipolar magnets have been studied both for m > 1 and m = 1 
(Aharony 1975, 1976a), the case of an Ising system with random long-range isotropic 
interactions has not pre_viously been discussed. It is expected in this case to find a 
random fixed point ~ ( J E ’ ) ,  as it is obtained for short-range interactions in an expansion 
in E = 4-d  (Aharony 1976a, Grinstein and Luther 1976, Khmelnitskii 1975, Jay- 
aprakash and Katz 1977). In two previous publications I analysed (Theumann 
1980a, b) the critical properties of the hierarchical model (Baker 1972) with random 
couplings. This is a model for Ising spins in one dimension (m = 1, d = 1) that in the 
uniform (non-random) case has analogous critical behaviour as the power law potential 
R-(l+u),  0 < U  < 1. It was found within an expansion in E ’  = 20 - 1 that the random 
hierarchical model does not have a stable fixed point in the physical region of parameter 
space for E ’  > 0. A fixed point O ( a )  exists only for E ’  < 0 and it is unstable. In the 
second paper this ‘runaway’ was shown to correspond to a spin-glass transition. Given 
the analogous critical properties of the uniform hierarchical model and the Ising system 
with power law interactions when d = 1 (Kim and Thompson 1977), I considered it of 
interest to verify whether a similar ‘runaway’ occurs for any d, a < d  <2a ,  and 
a < 2 - vSR. Here 7 S R  stands for the value of the exponent 77 for short-range inter- 
actions (Sak 1973). The results reported in this paper show that this is not the case. 

In 0 2 I introduce the starting Hamiltonian for a random Ising model with power law 
interactions, and recursion relations are derived in an expansion in E ‘  = 2a - d for 

as R - ( d + c )  

0305-4470/81/102759 +07$01.50 @ 1981 The Institute of Physics 2759 



2760 A Theumann 

u < 2 - qSR, by using the n = 0 limit (Emery 1975). Here I take both the short- (SR) and 
long- (LR) range k dependence in the propagator explicitly into account to analyse the 
crossover to SR behaviour (Sak 1973). Many of the derivations are by now standard in 
the renormalisation group theory of random systems; therefore I only quote the main 
results for completeness. 

The results are stated in § 3. It is found that for E '  > 0 the transition is described by a 
stable random fixed point O(&) in the physical region when u<2-qSR.  When 
u = 2 - ~ S R  the system crosses over smoothly to SR behaviour. The only peculiarity is 
that for the random fixed point r l s R < O  (Aharony 1976a); and it follows from an 
analysis similar to Sak's (1973) that there is a small region 2 < u < 2 + &/lo6 where the 
system still has LR behaviour ( E  = 4 - d). 

As these results are valid for any dimensionality d, the conclusion is that the random 
hierarchical model (Theumann 1980a, b) does not have the same critical behaviour as 
the random Ising system with power law interactions in one dimension, within the E '  

expansion. 

2. Hamiltonian and recursion relations 

Many of the derivations involved in this work are by now standard in the renor- 
malisation group theory of random systems; therefore I shall only quote the main 
results for completeness and refer the interested reader to the original papers. 

The starting point is the Hamiltonian for an Ising model with random interactions 
and continuous spins: 

where i, j refer to sites in a d-dimensional lattice. The couplings Jii can be considered to 
be independent random bonds with mean and variance 

( J i j )  = V(IRi -Rjl) (2.2) 

(JiJlm) - (J i j ) (J lm)  = 6 d j m A i j -  (2.3) 

The configurational averaged free energy can be written (Emery 1975) as 

1 
- (In 2)  = lim - [ (Z")  - 11 F 

KT n-o n 

and we have to consider the effective partition function for the n-component system 
(2"). In momentum space and in the continuum limit the effective Hamiltonian is 

(2.4) 
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with 

V(k)=r+ak '+gk".  (2.5) 
Here V ( k )  is the Fourier transform of V(R) in equation (2.3) and the terms ak', gk" 

correspond to SR and LR interactions, respectively. The momentum space integrals are 
in d dimensions and they have a cut-off lkl =s 1. The numerical factor Kd is: 

[W/2)1-l (2.6) 

and it was introduced for convenience in the definitions of U and A. The recursion 
relations obtained from equations (2.4)-(2.5) after integrating over spin variables with 
b-' < Ik] < 1 and rescaling (Fisher 1974, Aharony 1976b) were derived for SR inter- 
actions (g  = 0) by Aharony (1976a) and in the uniform case ( A =  0) by Sak (1973). In 

Kd = 21-dTTT-d/2 

the limit n = 0 they become 

a' = b-"[a +32(2A2+3u2-6uA)(a + g)15] 
g' = b2-T-"g 

r '=  b2-"[r +4(3u -2A)(11-r1z)-32(2A2+3~2-6~A)14(0)]  

U! = b ( 4 - d - 2 ~ )  [U - 1212(3u2 -4uA) + 16(12) ' (27~~ - 54u2A+ 36~A' )  

+ 3213(27 U - 7 2 ~  'A + 4 2 ~  A')] 

A I  = b(4-d-2") [A+81z(4A2- 3uA)+ 16(12)'(2OA3-36A2u + 2 7 A ~ ' )  

+ 3213(22A3 - 36A'u + ~ A u ' ) ] .  

By calling the propagator at the critical point (r = 0) 

G(4) = h2+ g q T '  

the integrals 11, I = 1, . . . , 5 ,  are given by 

" 1  

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

The integrals cannot be performed in closed form keeping both a and g different 
from zero; therefore as a first step we repeat the analysis of Sak (1973) and look for the 
stable fixed point values a*,  g" from equations (2.7)-(2.8). 

We find that for: 
(i) the LR region 

g = g * = 1  TLR=2-C7 (b" - 1 - 4 ( T ) M a *  = g*4(77)15. (2.18) 



2762 A Theumann 

Here a is 'irrelevant' and can be set equal to zero as long as 

(2.19) 

(ii) the SR region 

a = a * = l  g * = o  7SF.  = 4(7SR)15(ln(b))-' (2.20) 

u>2-7SR (2.21) 

stable for 

The function 4(q)  in equation (2.19) depends on 7 througkthe solutions U * ,  A* of 
equations (2.10)-(2.11). For the Ising random fixed point O ( ~ E ' )  it is necessary to take 
this dependence into account. 

According to these results, the integrals 11, 1 = 1, . . , , 5  can now be performed by 
setting a = 0, g = 1 in the LR region, U < 2 - TSR, d = 2u - E' ,  and they take continu- 
ously their SR value when U = 2, d = 4 - E .  Because we are interested only in their 
asymptotic values for large b and the propagator is taken at the critical point, these 
integrals are simpler than those appearing in the l /m expansion for long-range 
interactions (Ma 1973, Theumann 1975). Most of them have been previously evalu- 
ated by other authors and we give the results in the appendix for completeness. 

3. Results and conclusions 

I start by considering the long-range region, U < 2 - 7sR and ~ L R  = 2 - U ;  then 

4- d - 2 7 ~ ~  = 2~7-  d = E '  (3.1) 

and the integrals in the recursion relations (2.9)-(2.11) are evaluated at d = 2u. 
The fixed points of the recursion relations for U and A are: 
( a )  gaussian: U* = A* = 0, stable for E'  < 0, classical exponents, 
( b )  'uniform': A* = 0, U *  = ~ ' / 3 6  + O(E"), unstable, 
(c) 'unphysical': U* = 0, A* = - ~ ' / 3 2 ,  stable but inaccessible, 
( d )  random: E '  > 0, stable, 

U *  = &(E'A-'(u))''~ + O(E ' )  A* = &(E'A-'(u))'/~ +O(E') (3.2) 

where A(u)  is given by equation (A6). The value of the exponent v at this fixed point is 

1 1  
v=-+- (E'A-'(u))'/*+O(E'). 

U 3u2 

The crossover to the SR region occurs when U = 2 - T ~ R ;  then from equation (3.1): 

E '  = 4 - d - 2 7 s ~  = E - 2 7 ~ ~  (3.3) 

where vSR is the solution of equation (2.20) when Is and A ( a )  are evaluated at u = 2; 
c $ ( ~ s ~ )  is given by equations (2.19) and (3.2). The SR values of U * ,  A* and the 
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exponents are, from equations (3.2) and (3.3): 

u*-I  - 3 ( m E  3 + O(E 1 A* = $ ( & E ) ~ / ~  + O ( E )  
(3.4) 

TSR = -&E + o ( E  3/2) v = 1 + +(&E)  1’2 + O( E )  

in agreement with previous calculations (Aharony 1976a). 
It is then found that an Ising system with random LR isotropic interactions has a 

second-order transition described by a stable fixed point O ( a ) ,  E ’  = 2 u  - d > 0. The 
critical exponents go continuously from their LR u-dependent values to their SR values 
when U = 2 - TSR. 

As a consequence of the negative value of vSR in equation (3.4), the crossover 
between LR and SR behaviour occurs for U = 2 +  ~ / 1 0 6 .  Hence a small region O ( E )  
exists where u > 2  and the properties of the system are still dominated by LR inter- 
actions. For E ’  < 0 (LR) and E < 0 (SR) the transition is the same as in the pure system 
with classical exponents. 

A comparison with the results obtained previously (Theumann 1980a) for the 
random hierarchical model (RHM) is a bit surprising. The uniform hierarchical model 
(Baker 1972) shows the same critical behaviour to first order in an expansion in 
E ’  = (2u - 1) (Bleher and Sinai 1975, Kim and Thompson 1977) as the analogous king 
system with power law interaction R-(lC”) in one dimension (Fisher et a1 1972), thus it 
was expected that the same should happen in the random case. However, the RHM does 
not have astable fixed point in the physical region, in an expansion in E ’ ,  while the fixed 
point O(JIE’I) only exists for E ’  < 0 and is unstable (cf equation (3.2)). It was shown in a 
later paper that this ‘runaway’ indicates a spin-glass transition (Thekmann 1980b). The 
reason for this discrepancy is that to obtain the fixed point O(JIE’I) one has to work 
out recursion relations for U ’  and A’ including terms O(u3) ,  O(u2A),  etc as shown in 
equations (2.10) and (2.11). Now, in the uniform system ( A =  0), precisely these terms 
give corrections O ( E ’ ~ )  to the critical exponents, and the values of the critical exponents 
for the hierarchical model (Kim and Thompson 1977) coincide to O(E’ )  but differ to 
O(er2) from those for an king system with power law interactions (Fisher etal 1972). In 
fact, it should be mentioned that different procedures to carry out the E ‘  expansion in 
the hierarchical model give different results for the correction O(E ’2), while they all 
coincide to O(E’ ) ,  as discussed by Kim and Thompson (1977). 

The procedure I followed to analyse the RHM would give for a uniform system yet 
another different value for the corrections O(E’*). None of these coincides with the 
results of Fisher et a1 (1972). 

Acknowledgments 

I am grateful to W K Theumann for valuable discussions and comments. It is a pleasure 
to thank the Aspen Center for Physics for its kind hospitality during the summer, when 
this work was completed. 

Appendix 

The integrals 11, I = 1, . . . , 5 in equations (2.13)-(2.17) are evaluated in the LR region 
for a = 0, g = 1, d = 2 ( ~  - E ’ .  Their SR value is obtained by making (T = 2, d = 4 - E .  The 
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LR results for 11, 12, I ,  and 14(0) are implicit in the work of Fisher et a1 (1972). The 
parameter 6 is considered to be very large and only the leading contributions are kept 
(Aharony 1976b). We obtain 

1 1 I1=lb-, q'-ldq=-(l-b-") 
U 

1 1 

13 = 2 Jb-l pu-' dp lb-l q-lJ(p, 4) dq ('43) 

J (p ,  4)  = q-'F(iu, 1 -+U, U ;  p2/q2) 644) 

I3  = ln(b)(ln(b)+A(c7))+0(1) ('45) 

where 
if q > p  

and F(a ,  p, y ;  x )  is the hypergeometric series. For I3  we then obtain 

where calling (a), = @(a + 1) . . . (a + n - 1): 

2 (&T),(l-+u)n -(-+-) 1 1 1 
A(u)=-+22 

U ,=I  (U) ,  n!  2n 2 n + u  

= * ( U )  + T( 1) - 2T(3u) (A61 

and W ( x )  is the digamma function (Gradshteyn and Ryzhik 1965, Erdelyi et a1 1954). 
To evaluate I5 we start by evaluating 

"1 

with J ( p ,  q )  defined in equation (A4). The first integral over the variable p is easily 
expressed as a series in powers of 1q + kl plus a logarithmic term. After differentiating 
twice with respect to Ikl and integrating over the angle between k and q we obtain 

Then for U < 2 the leading terms in IS((+)  are O(b2-") while for U = 2 

I ~ ( U  = 2) = 2 In(6) + 0(1). (A 10) 
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